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Abstract. We study the iinking probability ofpolygons on the simple cubic lattice. In paaicular. 
we consider two polygons each having n edges, confined to a cube of side L, and ask for the 
linking probability as a function of n and L .  We also consider other situations in which the 
polygons are resIxicted to be not too far apaR but not necessarily confined to a cube. We prove 
several rigorous results, and use Monte Carlo methods to address some questions which we are 
unable to answer rigorously. An interesting feaIure is that the linking probability is a function 
of L/nu3 where v is the exponent characteridng the radius o f g y d o n  of a polygon. 

1. Introduction 

Entanglements between polymer chains play an important role in the rheological properties 
of polymers (hager and Frisch 1967, Edwards 1968, de Gennes 1979, Lacher er al 
1986, Mikos and Peppas 1991, and many other references). p one might hope to model 
entanglements between chains by considering linking between two ring polymers. Linking 
has the advantage of being well defined topologically, and links (or catenanes) are of interest 
chemically in their own right (Frisch and Wasserman 1961, Diehich-Buchecker eta1 1984, 
Logemann 1993, and references quoted therein). In addition, linked pairs of DNA rings occur 
in the mitochondria of malignant cells (Hudson and Vinograd 1967) and are intermediates in 
the replication of circular DNA (Sundin and Varshavsky 1981), so linking can have important 
biological consequences. 

Ring polymers (such as closed circular DNA) can be modelled as n-step self-avoiding 
polygons on a lattice (such as Z3) or in R3,  and the properties of linked pairs of polygons 
in these systems have been studied using Monte Carlo methods by a number of workers 
(Vologodskii et al 1975, Michels and Wiegel 1986, Klenin et al 1988). Little is known 
rigorously, but some work has been done on the linking probability for random embeddings 
of circles in R3 (Pohl 1981, Duplantier 1981). 

In this paper we shall be concerned with linking of pairs of polygons in Z3. We consider 
two self- and mutually avoiding polygons, each with n edges, and ask for the probability 
that they are linked when they are subject to some constraint. (A constraint is necessruy 
since n will be finite and Z3 is an infinite space.) We shall consider several different 
constraints, such as requiring that the centres of mass of the two polygons are no more than 
a distance d apart, or that the two polygons are both contained in a cube of side L .  In 
general, the linking probability will depend on n and d or on n and L,  and we use both 
rigorous and numerical approaches to investigate these dependences. In section 2 we shall 
prove some results about the asymptotic behaviour for several cases, but we are unable 
to supply rigorous answers to many of the interesting questions. In section 3 we describe 
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the Monte Carlo approach which we have used, and we present and discuss the numerical 
results in section 4. 

2. Definitions and rigorous results 

We define a simple closed curve in R3 as the image of a smooth (C") or piece-wise linear 
(PL) map of the circle S' into R3. A link with k components is the image of a (smooth 
or PL) map of a disjoint union of k circles into R3. In this paper we shall be concerned 
only with links with two components. Two links L1 and LZ are equivalent if there is a 
homeomorphism of R3 onto itself which takes L1 to Lz, and the equivalence class of a link 
is called its link type. 

There are three distinct definitions of linking used in topology, and we first discuss 
the relation between these. no disjoint simple closed curves CI and Cz are topologically 
unlinked if there is a homeomorphism of R3 onto itself, H : R3 + R3, such that the images 
H(C1) and H(C2) are separated by a two-dimensional plane. The simple closed curve C, 
is hanroropicdly unlinked from Cz if there is a homotopy h, from the embedding CI to the 
constant map (i.e. hg(C1) = C1 and hl(C1) is a point) such that h,(C1) is disjoint from 
CZ V t  E [0, 11. It is possible for CI to be homotopically unlinked from CZ but for CZ to 
be homotopically linked to C1, so homotopic linking is not a symmetric relation (Rolfsen 
1976). Finally, CI is homologically unlinked from C, if C1 bounds an orientable surface 
which is disjoint from CZ. Homological linking is a symmehic relation, and homological 
linking implies homotopic linking which implies topological linking. In this paper we shall 
be concerned mainly with homological and topological linking. 

It is easy to detect whether or not two curves are homologically linked (Rolfsen 1976). 
One method, which is particularly useful for PL curves, is to orient each of the two curves 
CI and Cz, and to project them onto a plane so that no vertex in the projection of CI 
falls on the projection of Cz, or vice versa. At each point where C1 crosses under CZ we 
assign a value t1 or -1, according to the orientation of the crossing (see figure 1). The 
sum of these crossing numbers is called the linking number of the two curves, l (C , ,  CZ), 
and the curves are homologically linked if and only if l(C1, CZ) # 0 (Rolfsen 1976). 
Detecting topological linking is a more difficult problem, and the method we use here 
offers only a partial solution, in that it fails to detect some links. We compute the two 
variable Alexander polynomial A(s, f) evaluated at s = f = -1 (see, for instance, Torres 
(1953) for a justification of the method and Vologodskii et a1 (1975) for details of the 
calculation). If A(-1, -1) # 0 then the curves are topologically linked, but it is possible 
for a linked pair to have A(-1, -1) = 0. However, this does not occur for any link with 
less than nine crossings. 

-1 + 1  

Figure 1. Positive and negative crossings determined by a right-hand rule 
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We shall need a number of results for self-avoiding lattice polygons. We define an 
n-step self-avoiding polygon in Z3 as an ordered set of n vertices such that vertices i and 
i + 1 are a unit distance apart, 1 < i < n - 1, vertices n and 1 are. also a unit distance apart, 
with the set of n edges joining vertex i to vertex i + 1, 1 < i < n - 1, and vertex n to 
vertex 1. We shall be interested in the number, pn, of these polygons, where two polygons 
are considered distinct if they cannot be superimposed by translation. For instance p4 = 3, 
p6 = 22 and ps = 207. Since pn = 0 for all odd values of n we shall adopt the convention 
that n is even in most statements about self-avoiding polygons. The main rigorous result 
about the asymptotic behaviour of pn  is due to Hammenley (1961) who has shown that 
there exists a connective constant K > 0 such that 

' 

(2.1) 

and similar techniques, together with the use of a pattem theorem (Kesten 1963). have 
been used (Sumners and Whittington 1988, Pippenger 1989) to prove that the number p: 
of unknorted polygons behaves as 

p" = eu"+o(") 

(2.2) 

with 0 < KO < K ,  so that the probability P(n) that the polygon is a knot goes to unity 
exponentially rapidly as n goes to infinity, i.e. 

0 - Yg"+O(") P,, - e 

P(n)  = 1 - pf/pn = 1 - e-aW+cQ) (2.3) 

for some positive constant a0 = K - Q. 
We first prove a theorem about pairs of polygons in a cubic box of side L. 

Theorem 2.1. Let p f ) ( L ,  r )  be the number of ways of embedding two self- and mutually 
avoiding polygons, each with n edges, in a cube of side L such that the polygons are a link 
of type 5 .  Then 

provided that n and L both go to infinity such that L 2 n + q and L = eo(n). Here q is 
independent of n and L,  but may depend on r. 

Proof. Define the bottom vertex of a polygon as .the vertex having smallest coordinates, 
taken in lexicographic order. To obtain an upper bound on p f ) ( L ,  r). we consider 
embedding each polygon independently such that its bottom vertex is at each vertex of 
the cube of side L. This gives 

P ~ " ( L ,  r )  B ( L  + 116d (2.5) 

so that 

and the right-hand side is equal to K if L = eo(n). To obtain a lower bound we note that, 
for any given link type t, we can construct an embedding in Z3 of a pair of polygons 
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with this link type. This follows by an extension of the arguments of Soteros et a[ (1992). 
By subdivision and concatenation we can arrange this embedding so that an edge el of 
one polygon lies in the plane x = X I ,  containing vertices with smallest x-coordinate, and 
an edge e2 of the other polygon lies in the plane x = xz containing vertices with largest 
x-coordinate. Moreover, both polygons can be arranged to have the same number of edges, 
say m = m(7). With this pair of polygons fixed, we can translate each of polygons 
with n - m edges so that the plane x = x;? + 1 contains an edge of this polygon parallel to 
ez. and no vertices of this polygon have x-coordinate less than xz + 1. These two polygons 
can now be concatenated by adding and deleting pairs of edges. The same construction can 
be carried out for the edge el, giving the bound 

P W ,  7) > P,2-,/4. (2.7) 

For every value of n the resulting pair of polygons can always be contained in a cube of 
side n + q, for a suitable choice of q. This implies that 

provided that L > n + q. The theorem follows from (2.6) and (2.8). 

If we restrict our attention to non-trivially linked pairs of polygons (i.e. we exclude 
the unlinked pair), and count embeddings of pairs of polygons as distinct if they cannot be 
superimposed by translation, the above arguments work without the need for a confining 
cube, and we have the following theorem. 

Theorem 2.2. If pi*’(r) is the number of embeddings in Z3, per lattice site, of two 
polygons, each with n edges, forming a link of type 7, where 7 is any link other than 
the unlink, then 

(2.9) 

Proof. It is convenient to fix the bottom vertex of one of the polygons at the origin. Then 
the lower bound 

(2) (7) p L 1 4  (2.10) 

follows from a similar construction to that used in theorem (2.4). To construct an upper 
bound, we note that the two polygons cannot be linked if the bottom vertex of one is not 
within a cube of side n whose bottom vertex coincides with the bottom vertex of the other 
polygon. Hence we can construct each polygon in pn ways, and translate one relative to 
the other in at most n3 positions. Hence 

p!,z)(s) <.’pi. (2.11) 

Taking logarithms, dividing by h, and letting n go to infinity in (2.10) and (2.11) gives 
(2.9). 

Each of the polygons making up a link (i.e. each component of the link) can be knotted, 
and we can ask for the probability that an embedding of a link (of type 7) has unknotted 
components. The answer is given by the following theorem. 
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Theorem 2.3. The probability P@)(n, 2) that both components (with n edges) of a link of 
type z are knotted goes to unity as 

P @ ) ( ~ ,  r )  = 1 - e-mon+o(n) (2.12) 

when n + ca. 

Proof. Let p ~ z ) ( O ,  T) be the number of embeddings @er lattice site) of a pair of polygons, 
at least one of which is unknotted, each of which has n edges, and which are components 
of a non-hivial link of type T. Then, by the argument used to obtain (2.11), but using 
unknotted embeddings of at least one of the polygons, 

(2.13) 

and 

(2.15) 

(2.16) 

so that (2.12) follows with q = K - K O .  

3. Numerical methods 

The theorems proved in section 2 do not address the regime in which the polygons are 
appreciably deformed by the applied geometrical constraint. To investigate the behaviour 
of the link probability in this situation we use Monte Carlo methods to generate a random 
sample of pairs of polygons. The algorithm used was invented by Madras et a1 (1990) and 
is a modification of a cut-and-paste algorithm, introduced by Lal (1969) for the simulation 
of self-avoiding walks in the canonical ensemble, and extensively studied by Madras and 
Sokal(1988), who called it the pivot algorithm. The idea is to sample along a realization of 
a Markov chain, defined on the set of polygons with fixed number of edges. The necessary 
elementary moves for the algorithm include several elements of the octahedral group, the 
symmetry group of the cubic lattice. In order to generate pairs of polygons we implemented 
a slight modification of the algorithm used by Janse van Rensburg and Whittington (1991) 
to sample the space of single polygons. ' h o  pivots are chosen uniformly on each polygon 
and a symmetry operation (one for each polygon) is carried out on one of the two segments 
connecting the pivots. In addition to the usual self-avoidance condition for a single polygon, 
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we require mutual avoidance between the two polygons; such requirements can be efficiently 
implemented by using hash-coding (Knuth 1973, Horowitz and Sahni 1976). 

We are interested in studying situations in which the two polygons cannot be too far 
apart in space, since otherwise they will be unlinked. To focus the sampling on this 
regime we use an importance sampliig method where polygons are sampled from the 
probability distribution function f(d, 6) = A exp(-dz/d:) where d is the distance between 
the centres of mass of the two polygons, do is an appropriately chosen parameter, and 
A is a normahiation constant. Since we are sampling &om a non-uniform distribution, 
in the data analysis we attach a weight w to each polygon pair in the sample, with 
w = l/f = A-’ exp(dz/d;). In addition we pool the data from runs with different values 
of do by using suitably weighted averages. 

We studied polygon pairs of length n ranging from n = 400 up to n = 1800. For 
a fixed value of n we sampled with different values of 6 in the interval [n/4,4n]. For 
every state sampled in the Markov chain we computed the linking number, the Alexander 
polynomial evaluated at s = t = -1, A(-I, -l), the Alexander polynomial of each of 
the two components of the link, the distance d between the centres of mass of the two 
polygons, the mean-square radius of gyration of each polygon, and the spans in the three 
lattice directions, L,, where x = x ,  y and 2, of the pair of polygons. Averages were taken 
over 25 000 samples, sampled every 50 attempted pivots. 

To investigate the dependence of the link probability on a geometrical constraint, such 
as a cube of side L, we used rejection techniques to choose, for a fixed L, the subset of 
pairs of polygons which could be contained in the L-cube. A pair of polygons fits a given 
L-cube if all the three spans are less than L. To count the number of ways in which a 
given pair can be contained in an L-cube we consider every two embeddings of pairs to be 
distinct even if they can be superimposed by translation in the x, y or z directions within 
the cube. 

4. Numerical results 

In this section we report results for two types of consmint. In section 4.1 we consider two 
polygons confined in a cube of side L,  and examine the linking probability as a function 
of n and L. In section 4.2 we consider pairs of polygons which are constrained so that 
the distance between their centres of mass cannot exceed d, and investigate the linking 
probability as a function of n and d. We find strong qualitative similarities between the two 
cases. 

4.1. Polygons confined to cubes 

The results obtained in section 2, especially theorem 2.1, were for pairs of polygons whose 
configuration was not seriously affected by the presence of a constraint. For two polygons 
each with n edges, confined to a cube of side L,  we would expect that this behaviour would 
continue until L - nu,  where v is the exponent characterizing the n-dependence of the 
mean-square radius of gyration. For L c n”, the polygons will be more compact, and this 
effect will increase as L decreases at fixed n. We shall focus on this regime. 

In figure 2 we show the probability for polygon pairs to be homologically linked (i.e. 
of having a non-zero linking number) as a function of n and L. The qualitative features are 
clear. The linking probability increases with increasing n at fixed L, and with decreasing 
L at fixed n. Since there are two length scales in this problem (n” and L) one expects that 
it will be the ratio between these length scales which will govern the behaviour, and this is 
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Figure 2. The homological linking probability for polygon pairs as a function of the number (n) 
of edges in each Different curves correspond to different values of L: 72 (O), 84 (U), 96 (A) 
and 108 (0). 
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indeed the case. In figure 3 we show the linking probability as a function of n/L ' /" ,  and 
it is clear that all the data for different values of n and L fall on a single curve. We note 
that the linking probability is still quite small for n/L'/" = 1. 

" I 
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

7lILlIV 

Figure 4. Probability of polygon pairs being homologicaUy linked, given that the polygons are 
topologically linked, as a function of the scaled variable n/LL/". 

Since homological linking is the weakest form of linking, it is interesting to investigate 
how effective it is as an indicator of topological linking. We consider the subset of pairs 
of polygons which have either A(-1, -1) # 0 or 1 # 0 (or both), and we refer to these 
as topologically linked. (Although these invariants may miss some topologically linked 
pairs, we do not expect that this will be quantitatively serious at these values of n.) In 
figure 4 we plot the probability of being homologically linked, given that the polygons are 
topologically liked, as a function of n/L1 /" .  As we see in figure 3, there are two different 
regimes corresponding to the dominance of one of the two length scales over the other. 
In particular for n << L'/", which corresponds to large boxes, almost all the topologically 
linked pairs are homologically unlinked. On the other hand, as n/L'/" increases, the fraction 
of topologically linked polygon pairs that are also homologically linked increases and goes 
to unity for n >> L'/". This behaviour, which is not obvious a priori, suggests that 
homological linking is a good indicator of topological linking for configurations in which 
the two polygons are strongly interpenetrating, whereas it becomes a less efficient indicator 
for configurations in which the two components are, on average, further apart. 

4.2. Centre-of-mass constraint 

In this section we consider pairs of polygons (each with n edges) with distance between their 
centres of mass no greater than d. Once again we have two length scales (d and nu) and we 
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expect that it will be the ratio of these length scales which will be important. In figure 5 we 
show the probability of being homologically linked as a function of n/d'l" and again the 
data for various values of n and d fall on a single cuwe. Also in this case we can see the 
presence of two different regimes. For n << d l l u  the centres of mass of the two polygons are 
very far apart and, as expected, the linking probability is almost zero. As n/d'/" increases, 
the two polygons come closer together and are more likely to be linked. It is important to 
notice that for the limiting case n >> d'l" the homological linking probability tends to a 
constant value strictly less than unity. This feature~was also corroborated by performing a 
run in an extreme case with n = 6400 and with small d .  

In figure 6 we show the probability of being homologically linked given that the 
polygons are topologically l i e d ,  as a function of n/d' /".  Again, the values range from 
close to zero to close to unity, but homological linking Seems to be a good indicator of 
topological linking for n/d'/" greater than about six. 

5. Discussion 

Although entanglements between polymer chains are clearly important in many areas of 
polymer physics, much less work has been done on this problem than on self-entanglement 
of a polymer chain, or knotting of a ring polymer. In this paper we have focused on linking 
of a pair of ring polymers, modelled as self-avoiding polygons on the simple cubic lattice. 

All of the results reported in this paper are for links in which the two components have 
the same number of edges. We have shown rigorously that the number of embeddings 
of any non-trivial link has the same exponential behaviour, independent of the link type. 
Moreover, we have shown that each of the two components wiil almost surely be knotted, 
in the n -+ ca limit. 

!n order to compare the behaviour of a non-trivial link with that of an unlinked pair of 
polygons, we have to impose some geometrical constraint, such as putting the polygons in 
a box, or demanding that their centres of mass be not too far apart. For polygons in a cube 
of side L we have proved that the exponential behaviour is the same for any link type as 
for the unlinked pair, under some mild conditions on L which ensure that the box is big 
enough for the constraint not to compress the polygons. 

In order to investigate the behaviour when the geomaical constraint is more severe, we 
have developed a Monte Carlo algorithm which is a mixture of pivots and a rejection scheme. 
We have used this to examine the dependence of both the homological and topological 
linking probabilities on n and L,  and on n and d ,  the maximum allowed distance between 
the centres of mass of the components. In each case we find that the behaviour is governed 
by the competition between two length scales (nu and L,  or n" and d) ,  and the linking 
probability is a function of either n/L1/" or n/d' /".  Although the general behaviour is 
similar for polygons in a box, or with a centre-of-mass constraint, there are interesting 
quantitative differences. These may reflect the difference in the way in which the shape 
of a polygon responds to these two constraints. For polygons in a box, the constraint is 
isotropic and the decrease in the overall size of the polygons (as measured, for instance, 
by their radii of gyration) is also isotropic. When the polygons are pushed closer together 
by the centre of mass constraint, they shrink in a direction along the line joining their 
centres-of-mass, but expand in the directions normal to this line. 

We have calculated the probability that one of the components is 2 knot and have found 
that this is very small at the values of n considered here. This is in contrast to the asymptotic 
result of theorem 2.3. In fact we know from other work (Vologodskii eta1 1974, Janse van 
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Rensburg and Whittington 1990) that the knot probability for a single polygon is quite small 
at these values of n, but it is even smaller when the polygon is a component of a non-trivial 
link. Presumably this reflects the steric hindrance between the components. 

In future work we intend to investigate the influence of other geometrical constraints 
on the linking probability. 
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